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Abstract

This paper is concerned with the use of triangularly shaped actuators for the implementation of direct velocity feedback

(DVFB) control on a resiliently mounted beam. The effects on the stability is investigated of boundary conditions and the

shape of the actuator. For practical boundary conditions, with a combination of the rotational and linear springs, it is

found that the linear spring is the principal component affecting the stability and thus the control performance. The

stiffness of this spring has to be high enough to approximate a simply supported boundary condition for good

performance.

The amplitude of the sensor–actuator frequency response function increases as the top angle and the height of the

triangular actuator is increased so that control effort can be saved. However, as the height of the actuator is increased, the

stability margin reduces. Therefore, for the given beam there is an actuator shape that gives the best compromise between

the stability and control effort.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Control of low-frequency sound transmission through lightly damped and lightweight panels in aircrafts,
helicopters, automobiles and trains is an important design issue. The sound transmission at low frequencies
can be reduced by controlling the response of the panel itself and by modifying the radiation efficiency of the
low-frequency resonant modes [1]. For example, mass and stiffness treatments can be used both to reduce
vibration and to modify the sound radiation efficiency of low-order modes in order to produce an overall
reduction of the sound radiation. However, these passive techniques have limited performance at low
frequencies and require substantial variation to the structure of the panel causing drawbacks such as the
change of geometry and weight and the increase of costs [2]. Alternatively, active control techniques could be
employed using sensor/actuator transducers connected by an active controller which may be decentralised.
Vibration actuators can be divided into two main categories: force actuators and strain actuators. A point
velocity sensor and a force actuator can easily form a collocated and dual sensor–actuator pair which is
particularly convenient for the local implementation of stable direct velocity feedback control loops. However,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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in order to generate a point force, the actuator must react against another structure or against a proof mass.
Thus, this configuration tends to be heavy and occupy large volumes. To achieve compact and lightweight
smart panels, strain actuators have been considered. Normally square piezoelectric patch actuators with
accelerometer sensor at their centre have been used to implement direct velocity feedback control [3–6]. With
this configuration, however, it is a problem to ensure unconditionally stable feedback loops because the
sensor–actuator pair is not truly collocated and dual. Furthermore, the actuation obtained from the piezo-
patch is a distribution of moments along the edges, which more effectively couples into higher modes of the
structure than lower ones, so that the sensor–actuator frequency response function has large amplitude at
higher frequencies where the phase exceed �90� and thus the closed loop is likely to become instable for large
control gains.

Recently, Gardonio and Elliott [2] have proposed the use of triangularly shaped piezo-actuators arranged
along the perimeter of the radiating structure with accelerometers at their top vertexes. In this context
they found that the configuration gives much larger gain margin and better performance than using the
square patches on a simply supported plate. Since in practice the boundary condition is not perfectly
simply supported, more understanding about the force and moments generated by the triangularly
shaped piezoceramic actuator on a structure with compliant boundaries is required. Indeed the aim of this
paper is to investigate the effects of compliant boundary conditions on the stability and control performance
of a velocity feedback loop using a triangularly shaped actuator aligned along the border of a thin structure.
In order to provide a clear understanding of the principal phenomena which determine the stability and
performance of such a system, a simple model problem is considered, which is made of a thin beam with
transverse and rotational springs at the ends and has one triangularly shaped piezoelectric actuator with the
base located at one end of the beam. Many researchers [7–9] have used a triangularly shaped actuator to
approximate a linear shading of a piezoelectric actuator in one dimension which gives transverse point force
at both ends and a moment at the one end. In the previous applications [7–9], however, a very long triangular
actuator covering whole length of a cantilever beam has been used such that the actuator angle was very
small, e.g. yPZTo4:3� in Ref. [9]. In this case the contribution of the moment distribution along the lateral
sides is negligible.

In Section 2, the response of a resiliently mounted beam supported by both linear and rotational springs at
both ends is examined. Based on the formulation of a generally distributed piezoceramic patch [10,11], the
actuation resultant due to a triangularly shaped piezoceramic actuator on the beam is derived in Section 3.
The implementation of a direct velocity feedback control system using the triangularly shaped actuator is then
studied in Section 4. The effects of the boundary conditions are evaluated and the boundary condition
requirements for a stable feedback control loop are analysed. Finally, a parametric study on the shapes of the
actuators is made in Section 6 with reference to the stability and controllability.
2. Resiliently mounted beams with a triangularly shaped actuator

In this section the response of a resiliently supported beam is modelled and analysed. As shown in Fig. 1,
a general resilient boundary condition can be modelled by a rotational spring and a linear spring at each end.
Assuming Euler–Bernoulli beam theory, which is valid for slender beams e.g. flexible wavelengths are greater
than 10 times the larger cross-section dimension, the equation of motion for the forced lateral vibration [12,13]
is given by

Eð1þ jZÞI
q4w
qx4
ðx; tÞ þ rA

q2w

qt2
ðx; tÞ ¼ Lðx; tÞ, (1)

where E is Young’s modulus, I is the moment of inertia of the beam cross-section about the y-axis, Z is loss
factor, r is mass density, A is cross-sectional area of the beam and Lðx; tÞ is the excitation operator. It is
assumed that the piezoceramic actuator is much thinner than the beam an so has negligible effect on its
dynamic behaviour. When the beam is excited by a force, f ðx; tÞ and moment, Tðx; tÞ, then,

Lðx; tÞ ¼ f ðx; tÞ þ
qT

qx
ðx; tÞ. (2)
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Table 1

Mechanical properties of the beam

Symbol Value Descriptions

E 65 Young’s modulus (MPa)

r 2650 Density ðkg=m3Þ

n 0.3 Poisson ratio

L 0.50 Length (m)

b 0.03 Width (m)

h 0.002 Thickness (m)

Z 0.01 Loss factor

Fig. 1. Bernoulli–Euler beam with a general boundary condition, subject to forces and moments generated by a triangular actuator.
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The boundary conditions resulting from the linear and rotational springs can be given by applying the
moment and shear force balance at the ends of the beam. Hence, the boundary conditions are

q2w

qx2
¼

kR

EI

qw

qx
;

q3w
qx3
¼ �

kT

EI
w (3)

at x ¼ 0 and

q2w

qx2
¼ �

kR

EI

qw

qx
;

q3w
qx3
¼

kT

EI
w (4)

at x ¼ L, where kR and kT are the rotational and linear spring constants, respectively.
In order to simplify the analysis, it is convenient to define non-dimensional linear and angular spring

constants as

k ¼
kT L3

EI
; t ¼

kRL

EI
. (5)

The free vibration response of the resiliently supported beam considered in this study has been derived using
the formulation presented by Magrab [13]. The natural frequencies for the beam with dimensions and material
properties given in Table 1 are examined to characterise the effects produced by the resilient boundary
conditions. Fig. 2 shows the variation of the natural frequencies with the linear spring constant when t ¼ 0
and with the rotational spring constant when k ¼ 1. Fig. 2(a) shows that for very small linear and angular
stiffnesses, the first two natural frequencies are approximately zero since the natural response of the beam is
characterised by translational and rocking rigid body modes on the soft springs. Also, the higher order natural
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Fig. 3. Variation of natural modes with the spring constants: (a) first modes, (b) second modes, (c) third modes, and (d) fourth modes for a

freely supported beam (k ¼ 0 and t ¼ 0) (solid), a resiliently supported beam (k ¼ 50 and t ¼ 0) (dashed), a simply supported beam

(k ¼ 1 and t ¼ 0) (dot–dashed) and a clamped beam (k ¼ 1 and t ¼ 1) (dotted).
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Fig. 2. Variation of natural frequencies with the spring constants: (a) when t ¼ 0, (b) when k ¼ 1.
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frequencies approximate those of a flexible freely supported beam. When the linear spring constant is raised to
higher values such that k � 103, for example, then the natural frequencies change to those of a simply
supported beam. Fig. 2(b) shows that, when the angular spring constant is also raised, the natural frequencies
change to those of a clamped beam when t � 103. The same behaviour can be seen from the variation of the
first four natural modes with the spring constants shown in Fig. 3.

3. Equivalent actuation on beam generated by a triangular piezo-patch

The excitation field generated by a piezoelectric patch actuator results from the elastic coupling of the
actuator and the structure on which it is bonded. Assuming first-order shear deformation [10,14] in the
structure, Lee [10] has formulated the flexural actuation effect on two-dimensional plate structures in terms of
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the following spatial differential operator ðLÞ:

L½Lðx; yÞ� ¼ e031
q2Lðx; yÞ

q2x
þ e032

q2Lðx; yÞ

q2y
þ 2e036

q2Lðx; yÞ
qx qy

, (6)

where Lðx; yÞ is the distribution function describing the shape of the piezoelectric actuator and e031, e032 and e036
represent the piezoelectric stress/charge constants with respect to the structure axes.

Sullivan [15] has shown that, a triangularly shaped actuator having thickness, hPZT, and the top angle, yPZT,
bonded on a thin plate with thickness of hp generates forces at the three vertexes and moments along the three
edges as shown in Fig. 4, which are given by

Lðx; tÞ ¼
hsvcsðtÞ

2
½2me031fdðxÞdðy� bÞ þ dðxÞdðyþ bÞ � 2dðx� aÞdðyÞg�

þ
hsvcsðtÞ

2
e031 Uðyþ bÞ �Uðy� bÞ
� � qdðxÞ

qx

� �

�
hsvcsðtÞ

2
ðm2e031 þ e032Þ

dðy�mxþ bÞ

qn1
þ

dðyþmx� bÞ

qn2

� �� �
, ð7Þ
Fig. 4. Excitation field for beams due to the triangularly shaped actuator obtained from two-dimensional approach. Note that the

expressions in the figure are the resultant of the Laplacian operator so that the moments and forces generated are calculated multiplying

hsvcsðtÞ=2.

0 10 20 30 40 50 60 70 80 90

104

103

102

101

100

10-1

Actuator Angle, θPZT(degree)

N
o

rm
a

lis
e

d
 F

o
rc

e
 a

n
d

 M
o

m
e

n
t,

 2
(F

,M
)/

(h
s
 v

c
s
) m2e31 +e32

2me31

0

0

e31
0

4me31

0

0

Fig. 5. Variation of actuation with the actuator angle. It is noted that the actuation components associated with m ¼ tan yPZT diverse.



ARTICLE IN PRESS
C. Hong et al. / Journal of Sound and Vibration 301 (2007) 297–318302
where hs ¼ ðhp þ hPZTÞ=2, m ¼ b=a ¼ tan yPZT, a and b are the height and the half-base length of the
actuator, vcs is the voltage to the actuator, dðÞ and UðÞ are the delta function and the step function,
respectively, and n1 and n2 are the unit normal vector of the inclined sides of the triangular actuator. Fig. 5
shows the dependence of these excitation components on the actuator top angle, yPZT, for the material
and piezoelectric properties summarised in Table 2. Apart from the moment excitation on the side along the
y-axis, the force and moment excitations strongly depend on the shape of the actuator. However, the response
of the structure depends on the modal coupling of the excitation field with the natural modes of the
structure itself. As shown in Ref. [16], the effectiveness of the point force excitation is directly related to
the modal displacement at the force location while that of the moment is related to the slope of the mode at the
moment location.

The actuation components for beams can be evaluated by projecting the two-dimensional distribution,
shown in Fig. 4, on the beam axes, x. The forces at the vertexes of the base edge of the actuator are summed up
and act at the end of the beam. The line of moments along the base edge is also modelled as a concentrated
moment at the end of the beam. The moments along the lateral sides generate bending and torsional
excitation. The bending components along each lateral side are summed, while the torsional moments along
the lateral sides cancels each other when projected on the beam axes. Therefore, the actuation components for
beams with a triangularly shaped actuator at one end can be expressed as

Lðx; tÞ ¼
hsvcsðtÞ

2
½4me031fdðx� aÞ � dðxÞg�

þ
hsvcsðtÞ

2
2be031

qdðxÞ
qx

� �

�
hsvcsðtÞ

2
½2mðm2e031 þ e032ÞfdðxÞ � dðx� aÞg�. ð8Þ

The first term in Eq. (8) denotes the concentrated forces at x ¼ 0 and a, the second term the concentrated
moment at x ¼ 0, and the third term corresponds to two concentrated forces at x ¼ 0 and a, which originally
come from the distributed moments between x ¼ 0 and a. Physically, the distributed moments can be
interpreted with pairs of forces generating the moments. Thus, apart from the forces at the boundary, the
internal force components of neighbour pairs cancel each other. Hence, assuming that d3010 ¼ d3020 and
d3060 ¼ 0, the equivalent actuation resultant on a beam generated by the triangular piezoelectric patch bonded
at one end of the beam is given by one concentrated moment at x ¼ 0 and two concentrated forces at x ¼ 0
and a, as shown in Fig. 6, so that

Lðx; tÞ ¼ me031hsvcsðtÞ ðm
2 þ 3Þfdðx� aÞ � dðxÞg þ a

qdðxÞ
qx

� �
(9)

for which the relationship, b ¼ a tan yPZT ¼ ma, is used.
In general the response of beams to force and moment excitations can be calculated by substituting the

excitation components, Lðx; tÞ, into the wave Eq. (1) together with the boundary conditions. Using the modal
Table 2

Geometry and physical parameters assumed for the piezoelectric actuator

Parameters Symbol Values

Thickness (mm) hPZT 1.0

Young’s modulus (GPa) YPZT 63

Density ðkg=m3Þ rPZT 7600

Poisson ratio nPZT 0.29

Piezoelectric stress/charge constants (V/m (or C/N)) d0
3010 166� 10�12

d0
3020 166� 10�12

d0
3060

0
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Fig. 6. Equivalent actuation resultant for beams with a triangular actuator. Note that the expressions in the figure are the resultant of the

Laplacian operator so that the moments and forces generated are calculated multiplying hsvcsðtÞ=2.
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summation expansion [17] as

_wðx; tÞ ¼
X

n

fnðxÞanðtÞ, (10)

then, because of the orthogonality of modes,

anðtÞ ¼ AnðF n þ TnÞ, (11)

where

F nðtÞ ¼

Z L

0

fnðxÞ f ðx; tÞdx; TnðtÞ ¼

Z L

0

qTðx; tÞ

qx
fnðxÞdx (12)

and

AnðoÞ ¼
jo

rAL½ð1þ jZÞo2
n � o2�

. (13)

Thus, we can now obtain the responses to the primary force, f pðx; tÞ ¼ Fpdðx� xpÞ expðjotÞ and the piezo
secondary excitations generated by the driving voltage, vcsðtÞ ¼ V cs expðjotÞ as

_wpðx;oÞ ¼ Y xpðx;oÞFp and _wsðx;oÞ ¼ Y xsðx;oÞVcs, (14)

where

Y xpðx;oÞ ¼ UðxÞapðoÞ and Y xsðx;oÞ ¼ UðxÞasðoÞ. (15)

UðxÞ is row vectors with the first R flexural natural modes of the beam given by

UðxÞ ¼ ½f1ðxÞ f2ðxÞ . . . fRðxÞ� (16)

and apðoÞ and asðoÞ are column vectors of the excitation terms of the first R flexural natural modes of the
beam due to the primary force and the secondary excitations generated by the triangular piezo patch,
respectively:

apðoÞ ¼

ap;1

ap;2

..

.

ap;R

2
666664

3
777775

and asðoÞ ¼

as;1

as;2

..

.

as;R

2
666664

3
777775
. (17)
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The terms in the excitations vectors are given by

ap;nðoÞ ¼ AnðoÞfnðxpÞ, ð18Þ

as;nðoÞ ¼ AnðoÞme031hs½ðm
2 þ 3ÞffnðaÞ � fnð0Þg � af0nð0Þ�. ð19Þ

4. Direct velocity feedback control for beams using a triangular actuator: stability

Fig. 7 shows the block diagram of the feedback loop implemented at the end of a beam with a triangular
piezoelectric patch actuator and velocity sensor pair shown in Fig. 1. The feedback gain will be assumed to be
constant so that direct velocity feedback control is implemented. The total velocity response at the sensor
location, x ¼ a, can be expressed as

_wrðjoÞ ¼ vr ¼ Y rpFp þ Y rsVcs, (20)

where Y rp and Y rs are the transfer functions giving the velocity at the error sensor location per unit primary
force and per unit control voltage to the triangular actuator, respectively, which can be obtained by

Y rp ¼ Urap and Y rs ¼ Uras, (21)

where Ur ¼ UðxrÞ, i.e.

Ur ¼ ½f1ðxrÞ f2ðxrÞ . . . fnðxrÞ�, (22)

and ap and as are given in Eq. (17).
For the direct velocity feedback control, the driving voltage, V cs, is given by

V csðjoÞ ¼ �hvrðjoÞ, (23)

where h is a feedback gain. Thus,

vrðjoÞ ¼
Y rpF p

1þ hY rs

. (24)

The stability analysis is carried out with reference to the Nyquist criterion which is assessed using the Bode
and Nyquist plots of the sensor–actuator frequency response function, hY rsðjoÞ. Since the feedback gain is
assumed to be constant, the stability can be assessed by analysing the transfer function, Y rsðjoÞ, given by

Y rsðjoÞ ¼
X1
n¼1

AnðjoÞfnðaÞme031hs½ðm
2 þ 3ÞffnðaÞ � fnð0Þg � af0nð0Þ�. (25)

The behaviour of the sensor–actuator frequency response function thus depends on the boundary conditions
(k and t), the shape dimensions of the triangular actuator (a, b, or yPZT) and the location of the sensor (a in
this case). The phase characteristics of the sensor–actuator frequency response function can be assessed from
Fig. 7. Active feedback control system using a triangular shaped piezoceramic actuator.
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the function

Gn ¼ fnðaÞ½ðm
2 þ 3ÞffnðaÞ � fnð0Þg � af0nð0Þ�. (26)

In fact, since the phase of AnðjoÞ in Eq. (25) always stays between �90�, the phase of the sensor–actuator
frequency response function is shifted when the sign of Gn is changed from positive to negative.

In order to facilitate the physical interpretation of the sensor–actuator frequency response function, it is
useful to divide Eq. (25) into three parts for each term of actuation, that is: a point force at x ¼ 0, another
point force at x ¼ a, a point moment at x ¼ 0.

For the point force at x ¼ 0,

Y f 0ða; joÞ ¼
X1
n¼1

AnðjoÞme031hsfnðaÞðm
2 þ 3Þ½�fnð0Þ�, (27)

for the point force at x ¼ a,

Y faða; joÞ ¼
X1
n¼1

AnðjoÞme031hsfnðaÞðm
2 þ 3Þ½fnðaÞ�, (28)

and for the point moment at x ¼ 0,

Y m0ða; joÞ ¼
X1
n¼1

AnðjoÞme031hsfnðaÞ½�af0nð0Þ�. (29)

So,

Y rsðjoÞ ¼ Y f 0ða; joÞ þ Y faða; joÞ þ Y m0ða; joÞ. (30)

For this initial study, the beam is assumed to be clamped at both ends (k ¼ 1 and t ¼ 1). The actuator’s
dimensions are a ¼ 25mm and b ¼ 15mm, i.e. yPZT ¼ 31�. Since fnð0Þ ¼ 0 and f0nð0Þ ¼ 0 for the clamped
beam, the force and moment at the end do not influence the beam and the overall effect is that of a point force
at x ¼ a, so that the sensor–actuator frequency response function in the case of the clamped beam can be
written as

GðjoÞ ¼ Y ðccÞ
rs ða;oÞ ¼

X1
n¼1

AnðjoÞme031hsðm
2 þ 3Þf2

nðaÞ. (31)
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Since m ¼ tan yPZT40 for the physically possible shapes, i.e. yPZTo90�, it can be expected that the phase of
the plant response always stays between �90�, and so the control system is to be unconditionally stable.1

Indeed, Fig. 8 shows that the phase of GðjoÞ is confined between �90� so that the locus stays in the right-hand
side, which indicates that the control system is unconditionally stable. The dips in the sensor–actuator
frequency response function which are due to nodes of modes occurring close to the sensor location can be
found at about 10; 40 and 80 kHz. Those frequencies correspond to the nth natural frequencies such that the
first, second or third nodal point of the nth mode coincides to the height of actuator, a. Those frequencies
decrease as the stiffness of the boundary, k and/or t are decreased since the corresponding nodal points occurs
1However, it should be noted that the distributed moments along the lateral edges of the actuator can couple into the transverse plate

modes so that unconditional stability is not any more guaranteed.
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at lower modes. The frequency of these drops can be obtained explicitly for a simply supported beam since the
coordinate of the first nodal point of the nth mode can be expressed as L=n for nX2.

When the beam is simply supported (k ¼ 1 and t ¼ 0), fnð0Þ ¼ 0 but f0nð0Þa0. The moment at x ¼ 0
couples into the modes while the force at x ¼ 0 does not. Since the moment couples more efficiently into
higher modes, an extra phase shift occurs at a higher frequency. Fig. 9 shows the sensor–actuator frequency
response function in the case of a simply supported beam. It can be seen that the control system is only
conditionally stable but the gain margin is about 65 dB. The conditional stability is due to the existence of the
non-collocated, non-dual moment actuation at x ¼ 0. The total response at the sensor location is given by
the sum of the response due to the concentrated forces at x ¼ a shown in Fig. 10 (a) and the response due to
the concentrated moment at x ¼ 0 shown in Fig. 10(b). At frequencies below 7 kHz, the two responses are out-
of-phase but the magnitude due to the forces is much bigger than the other. The phase of the total response
shown in Fig. 9 stays between �90� in this frequency range. Around 7 kHz, however, the response due to the
force decreases because resonating modes at these frequencies have nodal lines close to the tip of the triangular
actuator where both actuation and velocity sensing occurs. This leads to a small response and also inefficient
actuation. Since the moment excitation component is located at the end of the beam and couples efficiently
into higher order modes, the response due to the moment excitation component remains relatively large at
higher frequencies. However, the total response at higher frequencies where the phase exceeds �90� is still
small compared to the low frequency where the phase is between �90� so that a large gain margin is available.

One possible way to remove the phase shift is to increase the rotational spring constant. In Eq. (25), f0nð0Þ
decreases as t increases so that the phase of the sensor–actuator frequency response function is shifted with a
smaller magnitude at a higher frequency. It is noted, however, that the sensor–actuator frequency response
function is decreased at low frequencies as the rotational spring constant increases because fnð0Þ ! fnðaÞ and
f0nð0Þ ! 0 at low frequencies.

A freely supported beam such that k ¼ 0 and t ¼ 0 is now considered. For this case, fnð0Þa0 and f0nð0Þa0,
and so the sensor–actuator frequency response function is given by Eq. (25). The plots in Fig. 11 for this case
display a marked instability effect. When k! 0, fnðaÞ � fnð0Þ (assuming fnðaÞ40) at frequencies less than
nth natural frequency (fof n) such that n � L=a. Therefore Y rsðoÞ ! 0, where f n is about 2 kHz in this case.
Precisely, at frequencies such that fnðaÞofnð0Þ, the phase of the sensor–actuator frequency response function
is thus outside the range of �90�. This is because at low frequencies the contribution of the forces at x ¼ 0 to
the sensor response is slightly higher and with opposite phase than that of the force at x ¼ a. The total
sensor–actuator frequency response function is hence characterised by a phase outside the �90� range at low
frequencies. In order to obtain a higher gain margin, the contribution of the forces at x ¼ 0 to the
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sensor–actuator frequency response function at the sensor location should be reduced by increasing the linear
spring constant.

The rotational spring at the boundary affects the frequency response only at the dips caused by the height of
the actuator. However, the influence is not critical because a high gain margin can still be obtained. In contrast
the linear spring significantly affects the stability at low frequencies up to about the nth natural frequency
where the first nodal point of the nth mode reaches the tip of the actuator. The stiffness necessary to guarantee
closed loop stability can be found for a given beam and actuator. Although it is possible to obtain a higher
gain margin with a higher linear spring constant and/or a higher rotational spring constant, the control
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performance depends on the amplitude of the sensor–actuator frequency response function. Since the
rotational spring tends to reduce the amplitude of the sensor–actuator frequency response function, there
exists an optimal value for the best trade-off between stability and control performance. To describe this
effect, a performance index (PI) is defined as

PI ¼ 20 log10ðGM � PRÞ ðdBÞ, (32)

where GM is the gain margin and PR is the maximum positive real part of GðjoÞ, i.e. maxðRefGðjoÞgÞ. The
maximum attenuation is then given by 20 log10ð1þGM � PRÞ in dB.

Fig. 12 shows the variation of these three values in terms of linear and rotational spring constants. It can be
seen from Fig. 12(a) that, at low linear spring constants up to k ¼ 104, the rotational spring helps to increase
the gain margin while at higher linear spring constants the rotational spring does not affect the gain margin. It
can be also seen from Fig. 12(b) that, at low rotational spring constants up to t ¼ 102, the linear spring
decreases the maximum sensor–actuator frequency response function, while at higher rotational spring
constants the linear spring does not affect the maximum amplitude of the sensor–actuator frequency response
function. Therefore, as shown Fig. 12(c), the performance index is increased as the linear spring constant
increases while it is decreased at t ¼ 50 when k ¼ 106 as the rotational spring constant increases. Note,
however, that the torsional stiffness when t ¼ 50 is relatively low such that it does couple into few modes as
shown in Fig. 2(b). The active control system using a triangularly shaped piezoceramic actuator can thus yield
a reasonable performance for a beam with practical boundary condition with a high linear spring constant, i.e.
k\104, which corresponds to an almost simply supported boundary condition for the first six flexural modes,
as shown in Fig. 2(a).

5. Control performance

This section considers the performance of a direct velocity feedback control system using a triangularly
shaped piezoceramic actuator bonded at the left hand side of a resiliently mounted beam with a velocity sensor
at the vertex of the actuator (Fig. 1). The effect of the boundary condition is examined first using the actuator
shape of a ¼ 25mm and b ¼ 15mm.

Fig. 13 shows the performance in terms of the total kinetic energy of a clamped beam, so that the feedback
loop is unconditionally stable, excited by a concentrated force at x ¼ 0:8L when subject to the feedback
control system with gains of 103; 104 and 105. It can be seen that, as the feedback gain is increased, the total
kinetic energy decreases at resonance frequencies. Increasing the feedback gain further, however, begins to
increase the response at other resonant frequencies because the control action, which is a force in this case, is
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high enough to pin the beam at the error sensor position so that a new boundary condition is introduced [18].
Therefore, the control system has a best performance at an optimal gain where the control system produces
the maximum damping effect without pinning effect. The performance is relatively poor at low frequencies
because of small sensor–actuator frequency response function when the beam is clamped. Fig. 14 shows
the control performance for a simply supported beam under the same control system. Better performance
than with the clamped beam can be achieved with a smaller feedback gain although the feedback loop
is now only conditionally stable. The feedback gains used in the simulation are 100; 1000 and 2000. It
should be noted that the control system for a simply supported beam is only conditionally stable. The
maximum gain in this case is about 2000, which is obtained from Fig. 9. Control spillover occurs between 5
and 7 kHz as predicted in the sensor–actuator frequency response function shown in Fig. 9. Fig. 15 shows
the control performance of the direct velocity feedback control of a resiliently mounted (k ¼ 105 and t ¼ 0)
beam with the feedback gains of 100; 300 and 600 (maximum gain). The control performance is almost the
same as that for simply supported beam except for the maximum gain and the control spillover occurred
between 3 and 4 kHz.
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Fig. 14. Total kinetic energy of a simply supported beam excited by a concentrated force at 0:2L (solid) and subjected to the direct velocity

feedback control using a triangularly shaped piezoceramic actuator (a ¼ 25mm; b ¼ 15mm) with the feedback gains of 102 (dashed), 103

(dot–dashed) and 2� 103 (dotted).
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The overall performance of the control systems can be evaluated in terms of the normalised kinetic energy
given by

KEðhÞ ¼ 10 log10

R f 2
f 1

KEðf ; hÞdfR f 2
f 1

KEpðf Þdf
; dB (33)

where KE represents the normalised average kinetic energy. KE and KEp are the kinetic energies before and
after control, respectively. f 1 and f 2 are the lower and upper frequencies of the frequency range of interest.

The normalised performance, integrated up to 2 kHz, is compared in Fig. 16 for the three boundary
conditions: clamped, simply supported and resiliently mounted. The normalisation is performed in the
frequency range between 0 and 2 kHz. It can be seen that a maximum reduction in the kinetic energy of the
clamped beam is restricted to 10 dB by the pinning effect of the feedback loop with high gains. The control
system for the simply supported beam gives much higher reduction of 27 dB in the kinetic energy and is limited
by the maximum gain that can be used for this conditionally stable case. For the practical boundary condition
(k ¼ 105 and t ¼ 0), a reduction of 26 dB in the kinetic energy can be achieved. It is therefore clear that the
practical boundary condition should have a high linear spring stiffness in order to obtain a good control
performance of active control systems using a triangular actuator.

6. Parametric study

The stability and the control performance are affected by the shape of the actuator. The shape of the
actuator can be defined by the height of the triangular actuator, a, and its half-top angle, yPZT. Effects of these
parameters of the triangular actuator on the control system are investigated for the resiliently mounted beam
(k ¼ 105 and t ¼ 0).

6.1. Effect of the top angle of the actuator

The effects of the top angle of a triangular actuator is examined first keeping the height to be constant. The
sensor–actuator frequency response function varies with the location of the velocity sensor, which corresponds
to the height of the actuator in this case. The actuator shapes considered are shown in Fig. 17 with the top
angles of yPZT ¼ 15�; 30�; 45�; 60� and 75�. The width of the beam is assumed to be as large as the width of the
base of the triangular actuator while keeping the bending rigidity to be constant. The ratio of the actuation
resultants hence depends only on the angle for the given beam and actuator materials as shown in Fig. 6.
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Fig. 17. Actuator shapes varied with the top angles of yPZT ¼ 15�; 30�; 45�; 60�; 75�. The boundary condition of the beam is that k ¼ 105

and t ¼ 0.
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The sensor–actuator frequency response functions are calculated for the five shapes and shown in Fig. 18. It
is found that the magnitude of the sensor–actuator frequency response function increase monotonically as
increasing yPZT and the phase characteristics is the same up to the frequency where the moment along the base
of the actuator begins to affect the total response, which is about 3 kHz in this case. The gain margin thus
decreases while the maximum amplitude of the sensor–actuator frequency response function increases as yPZT
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Fig. 20. Effect of the actuator’s top angle on the normalised kinetic energy with the feedback gain from 0.1 to 104 for the resiliently

mounted (k ¼ 105 and t ¼ 0) beam using a triangularly shaped piezoceramic actuator with b ¼ 15mm and yPZT ¼ 15� (thick solid),

yPZT ¼ 30� (dotted), yPZT ¼ 45� (dot–dashed), yPZT ¼ 60� (dashed), yPZT ¼ 75� (solid).

C. Hong et al. / Journal of Sound and Vibration 301 (2007) 297–318 313
increases, so that the performance index, as defined in Eq. (32), is almost the same, which is between 27 and
30 dB as shown in Fig. 19.

Fig. 20 shows the effect of the actuator’s top angle on the normalised kinetic energy, integrated up to 2 kHz
as a function of feedback gain. With this actuator shape variation, the same reduction of 15 dB in the kinetic
energy can be achieved at increasing feedback gains as the width is reduced. It can be seen that the feedback
gain for approximately the same maximum performance is decreased as the top angle is decreased, so that the
actuator with wider angle is preferable because the control effort is lower.

6.2. Effect of the size of the actuator

In practical systems, the width of the actuator is limited to that of the beam and the height of actuator
should be in the range of values such that the force generated at the vertex can couple into the beam modes up
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to the frequency of interest and the sensor at the vertex can respond. The effect of the actuator’s size is hence
examined with three different heights of the actuator with the same top angle having yPZT ¼ 37� and the height
of 5, 10 and 20mm, as shown in Fig. 21, which correspond to 1%, 2% and 4% of the beamlength (L ¼ 0:5m).

The sensor–actuator frequency response functions are calculated for the 0.5m long beam and shown in
Fig. 22. The response increases as the size of actuator increases at low frequencies, but the bigger actuator
leads to the instability at lower frequency. The actuator height is hence limited by the frequency range where
the reduction should be guaranteed. The performance index is obtained again for the actuators as shown in
Fig. 23. It can be seen that the performance index is very small when the actuator size is small. This is because
the force generated by the actuator at the vertex could not couple into the structure effectively while the
moment generated along the base of the actuator can couple into it.

Fig. 24 shows the normalised kinetic energy, integrated up to 2 kHz, with the feedback gain from 0.1 to 104

using the triangularly shaped piezoceramic actuators. It can be found that the maximum gains that guarantee
#1 #2 #3

Fig. 21. Three different sizes of the actuators with the same shapes having yPZT ¼ 37� and the height of 5; 10 and 20mm. The boundary

condition of the beam is that k ¼ 105 and t ¼ 0.
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Fig. 24. Effect of the actuator shape on the normalised kinetic energy with the feedback gain from 0.1 to 104 for the resiliently mounted
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stability are almost the same, which is between 300 and 400, while the reduction performance is much different
from each other. The reduction performance is increased as the size of the actuator is increased.

6.3. Effect of the shape of the actuator

For further investigation of height effect, four different actuators as shown in Fig. 25 are now considered.
They have the same base, b ¼ 15mm, but have different heights of 20; 50; 100 and 200mm, corresponding to
yPZT ¼ 37�; 16:5�; 8:5� and 4:3�. Fig. 26 shows that the magnitude of the sensor–actuator frequency response
functions at low frequencies up to 500Hz increases as the height of the actuator increases, while it decreases up
to 2 kHz. This is because of the variation of the dominant actuation effect between the force and moment
generated by the actuator for a given height. Another important feature is the cut-off frequency where the
phase leg exceeds �90�. This frequency decreases as the height of the actuator increases. For the cases
considered here, those frequencies are at 4; 3, 2 kHz and 800Hz. The variation of the performance index
shown in Fig. 27 with the different height of actuator reflects all these behaviours. When the actuator is too
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Fig. 25. Four different shapes of the actuators having a ¼ 20mm; 50; 100 and 200mm with the same base of 30mm.
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Fig. 26. Variation of the sensor–actuator frequency response function with the size of the triangularly shaped piezoceramic actuator. The

boundary condition of the beam is that k ¼ 105 and t ¼ 0: (a) magnitude (dB), (b) phase (degree).
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small, the force does not couple into the modes efficiently so that the performance index is rather low. When
the actuator is too large, the phase shift occurs at rather low frequency so that the performance index becomes
relatively small.

The variation of the performance with the shapes are not consistent as shown in Fig. 28. This is due to the
contrasting effects generated by the simultaneous variation of angle and height as the top angle increased.
Therefore, we can consider an optimal shape for a given base of actuator and the frequency range.
Considering the four shapes of the actuator, the best performance can be achieved using the intermediate
shape #3.
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Fig. 28. Effect of the actuator shape on the normalised kinetic energy with the feedback gain from 0.1 to 104 for the resiliently mounted

(k ¼ 105 and t ¼ 0) beam using a triangularly shaped piezoceramic actuator with b ¼ 15mm and a ¼ 20mm (solid), 50mm (dashed),
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7. Conclusion

This paper is concerned with triangularly shaped actuators for the implementation of direct velocity
feedback control systems on resiliently mounted beams. Effects of boundary conditions and the shape of the
actuator on the control system are mainly investigated. For practical boundary conditions given by a
combination of the rotational and linear springs, it is found that the linear spring is the most important
component necessary to achieve collocated sensing and actuation in a desired frequency range, while the
rotational spring is not as important.

The dynamics of resiliently mounted beam supported by both torsional and linear springs at both ends is
presented and the direct velocity feedback control of the beam using the triangularly shaped piezoceramic
actuator positioned at either ends of the beam with velocity sensors at the top vertices is then investigated. It is
found that the control system is influenced by the boundary condition of the beam. The shape of the actuator
also affects the stability and the performance of the control system. When the beam is clamped, the
triangularly shaped actuator is perfectly collocated and dual with the velocity sensor at the tip so that the
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control system is unconditionally stable. In terms of performance, however, the control system for a simply
supported beam is better than for the clamped beam although the system is only conditionally stable in this
case. For practical boundary conditions achieved by the combination of the torsional and linear springs, the
linear spring is the most important component to effectively achieve collocation in a desired frequency range.

The effect of the shape of actuator is also investigated. The magnitude of the sensor–actuator frequency
response function is increased as the top angle is increased while the phase is not changed much. A smaller
feedback gain should be used with the wider actuator, thus saving control effort. The effect of the actuator size
is to increase the sensor–actuator frequency response functions as the size of the actuator is increased,
although the gain margin is also slightly reduced. Finally, as the base is fixed and the height is changed, so that
the top angle is also changed, the performance increases with height until it becomes about 20% of the length
of the beam.
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